log_{25}(x+2)^{12}-log_5\nthroot{4}{x+2}=1
|
log_3(x+y)-log_3(y-3)=1
3^{x}=3^1\cdot27^{y}
|
log_{36}(x+14)^{10}-log_6\nthroot{4}{x+14}=1
|
5log2+ylog4=xlog2
xlog16-2ylog64=\frac{1}6log16777216
|
log_3(x+y)-log_3(y-10)=1
3^{x}=3^4\cdot27^{y}
|
log_{4}(x+7)^{4}-log_2\nthroot{7}{x+7}=1
|
log_{4}(x+8)^{2}-log_2\nthroot{7}{x+8}=1
|
log_5(x+y)-log_5(y-7)=1
5^{x}=5^5\cdot125^{y}
|
log_{5}(x)-log_{5}(y)=3
log_{5}(3\cdot x)+log_{5}(y+22)=5+log_{5}(9)
|
12log5+ylog25=xlog5
xlog4-2ylog8=\frac{1}4log256
|
log_{4}(x+15)^{10}-log_2\nthroot{3}{x+15}=1
|
5log3+ylog9=xlog3
xlog25-2ylog125=\frac{1}5log9765625
|
log_{9}(x+6)^{2}-log_3\nthroot{6}{x+6}=1
|
6log5+ylog25=xlog5
xlog9-2ylog27=\frac{1}4log6561
|
5log3+ylog9=xlog3
xlog25-2ylog125=\frac{1}3log15625
|
log_7(x+y)-log_7(y-3)=1
7^{x}=7^6\cdot49^{y}
|
log_{36}(x+16)^{8}-log_6\nthroot{6}{x+16}=1
|
log_2(x+y)-log_2(y-1)=1
2^{x}=2^1\cdot4^{y}
|
log_{2}(x)-log_{2}(y)=2
log_{6}(3\cdot x)+log_{6}(y+321)=4+log_{6}(9)
|
log_{3}(x)-log_{3}(y)=2
log_{6}(4\cdot x)+log_{6}(y+21)=3+log_{6}(12)
|
log_{2}(x)-log_{2}(y)=2
log_{6}(3\cdot x)+log_{6}(y+51)=3+log_{6}(9)
|
log_{2}(x)-log_{2}(y)=3
log_{6}(4\cdot x)+log_{6}(y+970)=5+log_{6}(8)
|
log_{3}(x)-log_{3}(y)=2
log_{9}(2\cdot x)+log_{9}(y+727)=4+log_{9}(4)
|
9log2+ylog4=xlog2
xlog9-2ylog27=\frac{1}2log81
|