| \frac{1}{x^4+x^3+2x^2+x+1}-\frac{2}{x^4+x^2+1}=\frac{-1}{(x^2-x+1)(x^2+1)} | \frac{2}{x}+\frac{x+10}{x^2-5x}-\frac{9x}{x^2+5x-50}=\frac{-6}{x+10} |
| \frac{2x+4}{x^2-1}+\frac{x+2}{x^2-3x+2}=\frac{3x+6}{x^2-x-2} | \frac{3}{x}+\frac{x+3}{x^2-x}+\frac{x}{x^2+2x-3}=\frac{5x+12}{x^2+2x-3} |
| \frac{1}{x}+\frac{x+2}{x^2-2x}+\frac{x}{x^2-4}=\frac{3x+4}{x^2-4} | \frac{-4}{x}+\frac{x-8}{x^2-2x}-\frac{9x}{x^2-10x+16}=\frac{-12}{x-8} |
| \frac{1}{4x^4+2x^2+1}+\frac{4x^4+2}{8x^6-1}=\frac{1}{2x^2-1} | \frac{1}{x^4+x^2+1}+\frac{x^4+2}{x^6-1}=\frac{1}{x^2-1} |
| \frac{1}{x^2+x+1}+\frac{x^2+2}{x^3-1}=\frac{1}{x-1} | \frac{-3}{x}+\frac{x-12}{x^2-4x}-\frac{4x}{x^2-16x+48}=\frac{-6}{x-12} |
| \frac{5}{x}+\frac{x+20}{x^2-4x}+\frac{x}{x^2+16x-80}=\frac{7x+120}{x^2+16x-80} | \frac{1}{x^4+x^3+x^2+x+1}+\frac{x^4+x^3+x^2+2}{x^5-1}=\frac{1}{x-1} |